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ABSTRACT

Natural language and images are commonly used as goal representations in goal-
conditioned imitation learning (IL). However, natural language can be ambiguous
and images can be over-specified. In this work, we propose hand-drawn sketches
as a modality for goal specification in visual imitation learning. Sketches are easy
for users to provide on the fly like language, but similar to images they can also
help a downstream policy to be spatially-aware and even go beyond images to
disambiguate task-relevant from task-irrelevant objects. We present RT-Sketch, a
goal-conditioned policy for manipulation that takes a hand-drawn sketch of the
desired scene as input, and outputs actions. We train RT-Sketch on a dataset of
paired trajectories and corresponding synthetically generated goal sketches. We
evaluate this approach on six manipulation skills involving tabletop object rear-
rangements on an articulated countertop. Experimentally we find that RT-Sketch is
able to perform on a similar level to image or language-conditioned agents in
straightforward settings, while achieving greater robustness when language goals
are ambiguous or visual distractors are present. Additionally, we show that RT-
Sketch has the capacity to interpret and act upon sketches with varied levels of
specificity, ranging from minimal line drawings to detailed, colored drawings. For
supplementary material and videos, please refer to our website4.

1 INTRODUCTION

Robots operating alongside humans in households, workplaces, or industrial environments have an
immense potential for assistance and autonomy, but careful consideration is needed of what goal
representations are easiest for humans to convey to robots, and for robots to interpret and act upon.

Instruction-following robots attempt to address this problem using the intuitive interface of natural
language commands as inputs to language-conditioned imitation learning policies (Brohan et al.,
2023b;a; Karamcheti et al., 2023; Lynch & Sermanet, 2020; Lynch et al., 2023). For instance,
imagine asking a household robot to set the dinner table. A language description such as “put
the utensils, the napkin, and the plate on the table” is underspecified or ambiguous. It is unclear
how exactly the utensils should be positioned relative to the plate or the napkin, or whether their
distances to each other matter or not. To achieve this higher level of precision, a user may need
to give lengthier descriptions such as “put the fork 2cm to the right of the plate, and 5cm to the
leftmost edge of the table.”, or even online corrections (“no, you moved too far to the right, move
back a bit!”) (Cui et al., 2023; Lynch et al., 2023). While language is an intuitive way to specify
goals, its qualitative nature and ambiguities can make it both inconvenient for humans to provide
without lengthy instructions or corrections, and for robot policies to interpret for downstream precise
manipulation.
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On the other hand, using goal images to specify objectives and training goal-conditioned imitation
learning policies either paired with or without language instructions has shown to be quite successful
in recent years (Jiang et al., 2022; Jang et al., 2022). In these settings, an image of the scene in its
desired final state could fully specify the intended goal. However, this has its own shortcomings:
access to a goal image is a strong prior assumption, and a pre-recorded goal image can be over-
specific to a particular environment, making it difficult to reuse for generalization.

Figure 1: (Left) Qualitative rollouts comparing RT-Sketch, RT-1, and RT-Goal-Image, (right) high-
lighting RT-Sketch’s robustness to (top) ambiguous language and (bottom) visual distractors.

Between natural language, which lacks granularity to unambiguously specify goals, and images,
which overspecify goals in unnecessary detail, leading to the need for internet-scale data for gener-
alization, we recognize that current frameworks lack a goal representation which adequately captures
user intent in a convenient yet expressive manner. To this end, we propose hand-drawn sketches as
a modality for goal specification in visual imitation learning. By virtue of being minimal, sketches
are still easy for users to provide on the fly like language. Yet unlike language, they (1) provide
more specificity over desired spatial arrangements without needing to faithfully preserve pixel-level
details as in an image, and (2) help a downstream policy disambiguate task-relevant from -irrelevant
objects based on their selective inclusion, exclusion, or level of detail. Furthermore, sketches readily
integrate with off-the-shelf policy architectures that take visual representations as input.

In this work, we present RT-Sketch, a goal-conditioned policy for manipulation that takes a user-
provided hand-drawn sketch of the desired scene as input, and outputs actions. The novel architec-
ture of RT-Sketch modifies the original RT-1 language-to-action Transformer architecture (Brohan
et al., 2023b) to consume visual goals rather than language, allowing for flexible conditioning on
sketches, images, or any other visually representable goals. To enable this, we concatenate a goal
sketch and history of observations as input before tokenization, omitting language. We train RT-
Sketch on a dataset of 80K trajectories paired with synthetically produced goal sketches, generated
by an image-to-sketch stylization network trained from a few hundred image-sketch pairs.

We evaluate RT-Sketch across six manipulation skills on real robots involving tabletop object rear-
rangements on a countertop with drawers, subject to a wide range of scene variations. These skills
include moving objects near to one another, knocking a can sideways, placing a can upright, closing
a drawer, and opening a drawer. Experimentally, we find that RT-Sketch performs on a similar level
to image or language-conditioned agents in straightforward settings. When language instructions
are ambiguous, or in the presence of visual distractors, we find that RT-Sketch achieves ∼ 2X more
spatial precision and alignment scores, as assessed by human labelers, over language or goal image-
conditioned policies (see Fig. 1 (right)). Additionally, we show that RT-Sketch can handle different
levels of input specificity, ranging from rough sketches to more scene-preserving, colored drawings
(see Fig. 1 (left)).
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2 RELATED WORK

In this section, we discuss prior methods for goal-conditioned imitation learning which operate on
traditional goal representations. We also highlight ongoing efforts towards image-sketch conversion,
which open new possibilities for goal-conditioning yet are underexplored in robotics.

Goal-Conditioned Imitation Learning Despite the similarity in name, our learning of manipu-
lation policies conditioned on hand-drawn sketches of the desired scene is different from the notion
of policy sketches (Andreas et al., 2017), symbolic representations of task structure describing its
subcomponents. Reinforcement learning (RL) is not easily applicable in our scenario, as it is non-
trivial to define a reward objective which accurately quantifies alignment between a provided scene
sketch and states visited by an agent during training. We instead focus on imitation learning (IL)
techniques, particularly the goal-conditioned setting (Ding et al., 2019).

Goal-conditioned IL has proven useful in settings where a policy must be able to handle spatial or
semantic variations for the same task (Argall et al., 2009). These settings include rearrangement of
multiple objects (Brohan et al., 2023b;a; Lynch et al., 2023; Manuelli et al., 2019), kitting (Zakka
et al., 2020), folding of deformable objects into different configurations (Ganapathi et al., 2021), and
search for different target objects in clutter (Danielczuk et al., 2019). However, these approaches
tend to either rely on language (Brohan et al., 2023b; Lynch & Sermanet, 2020; Lynch et al., 2023;
Karamcheti et al., 2023; Shao et al., 2020), or goal images (Danielczuk et al., 2019) to specify vari-
ations. Follow-up works enable multimodal conditioning on either goal images and language (Jang
et al., 2022), in-prompt images (Jiang et al., 2022), or image embeddings (Manuelli et al., 2019;
Zakka et al., 2020; Ganapathi et al., 2021). However, all of these representations are ultimately
derived from raw images or language in some way, which overlooks the potential for more abstract
goal representations that are easy to specify but preserve spatial awareness, such as sketches.

In addition to their inflexibility in terms of goal representation, goal-conditioned IL tends to overfit
to demonstration data and fails to handle even slight distribution shift in new scenarios (Ross et al.,
2011). For language-conditioning, distribution shift can encompass semantic or spatial ambiguity,
novel instructions or phrasing, or unseen objects (Jang et al., 2022; Brohan et al., 2023b). Goal-
image conditioning is similarly susceptible to out-of-distribution visual shift, such as variations in
lighting or object appearances, or unseen background textures (Burns et al., 2022; Belkhale et al.,
2023). We instead opt for sketches which are minimal enough to combat visual distractors, yet
expressive enough to provide unambiguous goals. Prior work (Porfirio et al., 2023) has shown the
utility of sketches over pure language commands in navigation scenarios. Here, we demonstrate the
robustness of sketch-based policies to visual distractors in more fine-grained manipulation scenarios.

Image-Sketch Conversion When considering how best to incorporate sketches in IL, an impor-
tant design choice is whether to take sketches into account (1) at test time (i.e., converting a sketch
to another goal modality compatible with a pre-trained policy), or (2) at training time (i.e., explicitly
training an IL policy conditioned on sketches). For (1), one could first convert a given sketch to a
goal image, and then roll out a vanilla goal-image conditioned policy. This could be based on exist-
ing frameworks for sketch-to-image conversion, such as ControlNet (Zhang & Agrawala, 2023), or
text-to-image synthesis, such as InstructPix2Pix (Brooks et al., 2023) or Stable Diffusion (Rombach
et al., 2022). While these models produce photorealistic results under optimal conditions, they do
not jointly handle image generation and style transfer, making it unlikely for generated images to
match the style of an agent observations. At the same time, these approaches are susceptible to
producing hallucinated artifacts, introducing distribution shifts (Zhang & Agrawala, 2023).

Based on these challenges, we instead opt for (2), and consider image-to-sketch conversion tech-
niques for hindsight relabeling of terminal images in pre-recorded demonstration trajectories. Re-
cently, Vinker et al. (2022b;a) propose networks for predicting Bezier curve-based sketches of input
image objects or scenes. Sketch quality is supervised by a CLIP-based alignment metric. While
these approaches generate sketches of high visual fidelity, test-time optimization takes on the or-
der of minutes, which does not scale to the typical size of robot learning datasets (hundreds to
thousands of demonstration trajectories). Meanwhile, conditional generative adversarial networks
(cGANs) such as Pix2Pix (Isola et al., 2017) have proven useful for scalable image-to-image trans-
lation. Most related to our work is that of Li et al. (2019), which trains a Pix2Pix model to produce
sketches from given images on a large crowd-sourced dataset of 5K paired images and line draw-
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ings. We build on this work to fine-tune an image-to-sketch model on robot trajectory data, and
show its utility for enabling downstream manipulation from sketches.

3 SKETCH-CONDITIONED IMITATION LEARNING

In this section, we will first introduce our problem of learning a sketch-conditioned policy. We will
then discuss our approach to train an end-to-end sketch-to-action IL agent. First, in Section 3.1, we
discuss our instantiation of an auxiliary image-to-sketch translation network which automatically
generates sketches from a reference image. In Section 3.2, we discuss how we use such a model to
automatically hindsight relabel an existing dataset of demonstrations with synthetically generated
goal sketches, and train a sketch-conditioned policy on this dataset.

Problem Statement Our goal is to learn a manipulation policy conditioned on a goal sketch
of the desired scene state and a history of interactions. Formally, we denote such a policy by
πsketch(at|g, {oj}tj=1), where at denotes an action at timestep t, g ∈ RW×H×3 is a given goal
sketch with width W and height H , and ot ∈ RW×H×3 is an observation at time t. At inference
time, the policy takes a given goal sketch along with a history of RGB image observations to infer
an action to execute. In practice, we condition πsketch on a history ofD previous observations rather
than all observations from the initial state at t = 1. To train such a policy, we assume access to
a dataset Dsketch = {gn, {(ont , ant )}T

(n)

t=1 }Nn=1 of N successful demonstrations, where T (n) refers
to the length of the nth trajectory in timesteps. Each episode of the dataset consists of a given
goal sketch and a corresponding demonstration trajectory, with image observations recorded at each
timestep. Our goal is to thus learn the sketch-conditioned imitation policy πsketch(at|g, {oj}tj=1)
trained on this dataset Dsketch.

3.1 IMAGE-TO-SKETCH TRANSLATION

Training a sketch-conditioned policy requires a dataset of robot trajectories that are each paired with
a sketch of the goal state achieved by the robot. Collecting such a dataset from scratch at scale,
including the trajectories themselves and manually drawn sketches, can easily become impractical.
Thus, we instead aim to learn an image-to-sketch translation network T (g|o) that takes an image
observation o and outputs the corresponding goal sketch g. This network can be used to post-
process an existing dataset of demonstrations D = {{(ont , ant )}T

(n)

t=1 }Nn=1 with image observations
by appending a synthetically generated goal sketch to each demonstration. This produces a dataset
for sketch-based IL: Dsketch = {gn, {(ont , ant )}T

(n)

t=1 }Nn=1.

RT-1 Dataset In this work, we rely on an existing dataset of visual demonstrations collected by
prior work (Brohan et al., 2023b). RT-1 is a prior language-to-action imitation learning agent trained
on a large-scale dataset (80K trajectories) of VR-teleoperated demonstrations that include skills
such as moving objects near one another, placing cans and bottles upright or sideways, opening and
closing cabinets, and performing pick and place on countertops and drawers (Brohan et al., 2023b).
Here, we repurpose the RT-1 dataset and further adapt the RT-1 policy architecture to accommodate
sketches, detailed in Section 3.2.

Assumptions on Sketches We acknowledge that there are innumerable ways for a human to pro-
vide a sketch corresponding to a given image of a scene. In this work, we make the following
assumptions about input sketches for a controlled experimental validation procedure. In particular,
we first assume that a given sketch respects the task-relevant contours of an associated image, such
that tabletop edges, drawer handles, and task-relevant objects are included and discernible in the
sketch. We do not assume contours in the sketch to be edge-aligned or pixel-aligned with those in an
image. We do assume that the input sketch consists of black outlines at the very least, with shading
in color being optional. We further assume that sketches do not contain information not present in
the associated image, such as hallucinated objects, scribbles, or textual annotations, but may omit
task-irrelevant details that appear in the original image.

Sketch Dataset Generation To train an image-to-sketch translation network T , we collect a new
dataset DT = {(oi, g1i , . . . , gL

(i)

i )}Mi=1 consisting of M image observations oi each paired with a
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set of goal sketches g1i , . . . , g
L(i)

i . Those represent L(i) different representations of the same image
oi, in order to account for the fact that there are multiple, valid ways of sketching the same scene.
To collect DT , we take 500 randomly sampled terminal images from demonstration trajectories in
the RT-1 dataset, and manually draw sketches with black lines on a white background capturing the
tabletop, drawers, and relevant objects visible on the manipulation surface. While we personally
annotate each robot observation with a single sketch only, we add this data to an existing, much
larger non-robotic dataset (Li et al., 2019). This dataset captures inter-sketch variation via multiple
crowdsourced sketches per image. We do not include the robot arm in our manual sketches, as we
find a minimal representation to be most natural. Empirically, we find that our policy can handle
such sketches despite actual goal configurations likely having the arm in view. We collect these
drawings using a custom digital stylus drawing interface in which a user draws an edge-aligned
sketch over the original image (Appendix Fig. 13). The final recorded sketch includes the user’s
strokes in black on a white canvas with the original image dimensions.

Image-to-Sketch Training We implement the image-to-sketch translation network T with the
Pix2Pix conditional generative adversarial network (cGAN) architecture, which is composed of a
generator GT and a discriminator DT (Isola et al., 2017). The generator GT takes an input image o,
a random noise vector z, and outputs a goal sketch g. The discriminatorDT is trained to discriminate
amongst artificially generated sketches and ground truth goal sketches. We utilize the standard
cGAN supervision loss to train both (Li et al., 2019; Isola et al., 2017):

LcGAN = min
GT

max
DT

Eo,g[logDT (o, g)] + Eo,g[log(1−DT (o,GT (o, g))] (1)

We also add the L1 loss to encourage the produced sketches to align with the ground truth sketches
as in (Li et al., 2019). To account for the fact that there may be multiple valid sketches for a given
image, we only penalize the minimum L1 loss incurred across all L(i) sketches provided for a given
image as in Li et al. (2019). This is to prevent wrongly penalizing T for producing a valid sketch
that aligns well with one example but not another simply due to stylistic differences in the ground
truth sketches. The final objective is then a λ-weighted combination of the average cGAN loss and
the minimum alignment loss:

LT =
λ

L(i)

L(i)∑
k=1

LcGAN(oi, g
(k)
i ) + min

k∈{1,...,L(i)}
L1(oi, g

(k)
i ) (2)

In practice, we supplement the 500 manually drawn sketches from DT by leveraging the existing
larger-scale Contour Drawing Dataset (Li et al., 2019). We refer to this dataset as DCD, which
contains 1000 examples of internet-scraped images containing objects, people, animals from Adobe
Stock, paired with L(i) = 5 crowd-sourced black and white outline drawings per image collected on
Amazon Mechanical Turk. Visualizations of this dataset are provided in Appendix Fig. 4. We first
take a pre-trained image-to-sketch translation network TCD (Li et al., 2019) trained on DCD, with
L(i) = 5 sketches per image. Then, we fine-tune TCD on DT , with only L(i) = 1 manually drawn
sketch per robot observation, to obtain our final image-to-sketch network T . Visualizations of the
sketches generated by T for different robot observations are available in Fig. 5.

3.2 RT-SKETCH

With a means of translating image observations to black and white sketches via T (Section 3.1), we
can automatically augment the existing RT-1 dataset with goal sketches. This results in a dataset,
which we refer to as Dsketch, which can be used for training our algorithm, RT-Sketch.

RT-Sketch Dataset The original RT-1 dataset Dlang = {in, {(ont , ant )}T
(n)

t=1 }Nn=1 consists of N
episodes with a paired natural language instruction i and demonstration trajectory {(ont , ant )}T

n

t=1.
We can automatically hindsight-relabel such a dataset with goal images instead of language
goals (Andrychowicz et al., 2017). Let us denote the last step of a trajectory n as T (n). Then the new
dataset with image goals instead of language goals is Dimg = {on

T (n) , {(ont , ant )}T
(n)

t=1 }Nn=1, where
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Figure 2: Architecture of RT-Sketch allowing different kinds of visual input.

we treat the last observation of the trajectory on
T (n) as the goal gn. To produce a dataset for πsketch,

we can simply replace on
T (n) with ĝn = T (on

T (n)) such that Dsketch = {ĝn, {(ont , ant )}T
(n)

t=1 }Nn=1.

To encourage the policy to afford different levels of input sketch specificity, we in practice produce
goals by ĝn = A(on

T (n)), where A is a randomized augmentation function. A chooses between
simply applying T , T with colorization during postprocessing (e.g., by superimposing a blurred
version of the ground truth RGB image over the binary sketch), a classical Sobel operator (Sobel,
1968) for edge detection, or not applying any operators, which preserves the original ground truth
goal image (Fig. 2). By co-training on all representations, we intend for RT-Sketch to handle a
spectrum of specificity going from binary sketches; colorized sketches; edge detected images; and
goal images (Appendix Fig. 5).

RT-Sketch Model Architecture In our setting, we consider goals provided as sketches rather than
language instructions as was done in RT-1. This change in the input representation necessitates a
change in the model architecture. The original RT-1 policy relies on a Transformer architecture back-
bone (Vaswani et al., 2017). RT-1 first passes a history of D = 6 images through an EfficientNet-B3
model (Tan & Le, 2019) producing image embeddings, which are tokenized, and separately extracts
textual embeddings and tokens via FiLM (Perez et al., 2018) and a Token Learner (Ryoo et al.,
2021). The tokens are then fed into a Transformer which outputs bucketized actions. The output
action dimensionality is 7 for the end-effector (x, y, z, roll, pitch, yaw, gripper width), 3 for the
mobile base, (x, y, yaw), and 1 for a flag that can select amongst base movement, arm movement,
and episode termination. To retrain the RT-1 architecture but accommodate the change in input rep-
resentation, we omit the FiLM language tokenization altogether. Instead, we concatenate a given
goal image or sketch with the history of images as input to EfficientNet, and extract tokens from its
output, leaving the rest of the policy architecture unchanged. We visualize the RT-Sketch training
inputs and policy architecture in Fig. 2. We refer to this architecture when trained only on images
(i.e., an image goal-conditioned RT1 policy) as RT-Goal-Image and refer to it as RT-Sketch when it
is trained on sketches as discussed in this section.

Training RT-Sketch We can now train πsketch on Dπsketch
utilizing the same procedure as was

used to train RT-1 (Brohan et al., 2023b), with the above architectural modifications. We fit πsketch
using the behavioral cloning objective function. This aims to minimize the negative log-likelihood
of an action provided the history of observations and a given sketch goal (Torabi et al., 2018):

J(πsketch) =

N∑
n=1

T (n)∑
t=1

log πsketch(a
n
t |gn, {oj}tj=1)

4 EXPERIMENTS

We seek to understand the ability of RT-Sketch to perform goal-conditioned manipulation as com-
pared to policies that operate from higher-level goal abstractions like language, or more over-
specified modalities, like goal images. To that end, we test the following four hypotheses:
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H1: RT-Sketch is successful at goal-conditioned IL. While sketches are abstractions of real im-
ages, our hypothesis is that they are specific enough to provide manipulation goals to a policy.
Therefore, we expect RT-Sketch to perform on a similar level to language goals (RT-1) or goal
images (RT-Goal-Image) in straighforward manipulation settings.

H2: RT-Sketch is able to handle varying levels of specificity. There are as many ways to sketch
a scene as there are people. Because we have trained RT-Sketch on sketches of varying levels of
specificity, we expect it to be robust against variations of the input sketch for the same scene.

H3: Sketches enable better robustness to distractors than goal images. Sketches focus on task-
relevant details of a scene. Therefore, we expect RT-Sketch to provide robustness against distractors
in the environment that are not included in the sketch compared to RT-Goal-Image that operates on
detailed image goals.

H4: Sketches are favorable when language is ambiguous. We expect RT-Sketch to provide a
higher success rate compared to ambiguous language inputs when using RT-1.

4.1 EXPERIMENTAL SETUP

Policies We compare RT-Sketch to the original language-conditioned agent RT-1 (Brohan et al.,
2023b), and RT-Goal-Image, a policy identical in architecture to RT-Sketch, but taking a goal image
as input rather than a sketch. All policies are trained on a multi-task dataset of ∼ 80K real-world
trajectories manually collected via VR teleoperation using the setup from Brohan et al. (2023b).
These trajectories span a suite of common office and kitchen tasks such as picking and placing ob-
jects, reorienting cups and bottles upright or sideways, opening and closing drawers, and rearranging
objects between drawers or a countertop.

Evaluation protocol To ensure fair comparison, we control for the same initial and goal state of
the environment across different policy rollouts via a catalog of well-defined evaluation scenarios
that serve as references for human robot operators. For each scenario, we record an initial image
(RGB observation) of the scene, the goal image (with objects manually rearranged as desired), a
natural language task string describing the desired agent behavior to achieve the goal, and a set
of hand-drawn sketches corresponding to the recorded goal image. At test time, a human opera-
tor retrieves a particular evaluation scenario from the catalog, aligns the physical robot and scene
according to a reference image using a custom visualization utility, and places the relevant objects
in their respective locations. Finally, the robot selects one of the goal representations (language,
image, sketch, etc.) for the scenario as input to a policy. We record a video of the policy rollout for
downstream evaluation (see Section 4.2). We perform all experiments using the Everyday Robot5,
which contains a mobile base, an overhead camera, and a 7-DoF manipulator arm with a parallel
jaw gripper. All sketches are collected with a custom manual drawing interface on a tablet with a
digital stylus.

Performance Metrics Defining a standardized, automated evaluation protocol for goal alignment
is non-trivial. Since binary task success is too coarse-grained and image-similarity metrics like
frame-differencing or CLIP (Radford et al., 2021) tend to be brittle, we measure performance with
two more targeted metrics. First, we quantify policy precision as the distance (in pixels) between ob-
ject centroids in achieved and ground truth goal states, using manual keypoint annotations. Second,
we gather human-provided assessments of perceived goal alignment, following the commonly-used
Likert (Likert, 1932) rating scheme from 1 (Strongly Disagree) to 7 (Strongly Agree), for:

• (Q1) The robot achieves semantic alignment with the given goal during the rollout.

• (Q2) The robot achieves spatial alignment with the given goal during the rollout.

For Q1, we present labelers with the policy rollout video along with the given ground-truth language
task description. We expect reasonably high ratings across all methods for straightforward manip-
ulation scenarios (H1). Sketch-conditioned policies should yield higher scores than a language-
conditioned policy when a task string is ambiguous (H4). Q2 is instead geared at measuring to what
degree a policy can spatially arrange objects as desired. For instance, a policy can achieve semantic

5everydayrobots.com

7

everydayrobots.com


Figure 3: Goal Alignment Results: Average Likert scores for different policies rating perceived
semantic alignment (Q1) and spatial alignment (Q2) to a provided goal.

alignment for the instruction place can upright as long as the can ends up in the right orientation. For
Q2, we visualize a policy rollout side-by-side with a given visual goal (ground truth image, sketch,
etc.) to assess perceived spatial alignment. We posit that all policies should receive high ratings for
straightforward scenarios (H1), with a slight edge for visual-conditioned policies which implicitly
have stronger spatial priors encoded in goals. We further expect that as the visual complexity of a
scene increases, sketches may be able to better attend to pertinent aspects of a goal and achieve better
spatial alignment than image-conditioned agents (H3), even for different levels of sketch specificity
(H4). We provide a visualization of the assessment interface for Q1 and Q2 in Appendix Fig. 14.

4.2 EXPERIMENTAL RESULTS

In this section, we present our findings related to the hypotheses of Section 4. Tables 1 and 2 measure
the spatial precision achieved by policies in terms of pixelwise distance, while Fig. 3 shows the
results of human-perceived semantic and spatial alignment, based on a 7-point Likert scale rating.

Table 1: Spatial Precision and Specific Failure Occurrence
Spatial Precision (RMSE in px.) Failure Occurrence (Excessive Retrying)

Skill RT-1 RT-Sketch RT-Goal-Image RT-1 RT-Sketch RT-Goal-Image
Move Near 5.43± 2.15 3.49± 1.38 3.89± 1.16 0.00 0.06 0.33

Pick Drawer 5.69± 2.90 4.77± 2.78 4.74± 2.01 0.00 0.13 0.20
Drawer Open 4.51± 1.55 3.34± 1.08 4.98± 1.16 0.00 0.00 0.07
Drawer Close 2.69± 0.93 3.02± 1.35 3.71± 1.67 0.00 0.00 0.07

Knock 7.39± 1.77 5.36± 2.74 5.63± 2.60 0.00 0.13 0.40
Upright 7.84± 2.37 5.08± 2.08 4.18± 1.54 0.06 0.00 0.27

Visual Distractors - 4.78± 2.17 7.95± 2.86 - 0.13 0.67
Language Ambiguity 8.03± 2.52 4.45± 1.54 - 0.40 0.13 -

H1: We evaluate 6 skills from the RT-1 benchmark (Brohan et al., 2023b): move X near Y, place X
upright, knock X over, open the X drawer, close the X drawer, and pick X from Y. For each skill, we
record 15 different catalog scenarios, varying both objects (16 unique in total) and their placements.

In general, we find that RT-Sketch performs on a comparable level to RT-1 and RT-Goal-Image for
both semantic (Q1) and spatial alignment (Q2), achieving ratings in the ‘Agree’ to ‘Strongly Agree’
range on average for nearly all skills (Fig. 3 (top)). A notable exception is upright, where RT-
Sketch essentially fails to accomplish the goal semantically (Q1), albeit with some degree of spatial
alignment (Q2). Both RT-Sketch and RT-Goal-Image tend to position cans or bottles appropriately
and then terminate, without realizing the need for reorientation (Appendix Fig. 6). This behavior
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results in low centroid-distance to the goal (darker gray in Table 1 (left)). RT-1, on the other hand,
reorients cans and bottles successfully, but at the expense of higher error (Appendix Fig. 6, light
color in Table 1 (left)). In this table, we further see that RT-Goal-Image has a tendency to over-attend
to pixel-level details, which can result in excessive retrying behavior and failure to terminate when
attempting to rearrange objects to exactly match a given goal image (darker gray in Table 1 (right),
denoting more frequent failures).

H2: We next assess RT-Sketch’s ability to handle input sketches of varied levels of detail (free-hand,
edge-aligned line sketch, colorized line sketch, and a Sobel edge-detected image as an upper bound).
Free-hand sketches are drawn with a reference image next to a blank canvas, while line sketches are
drawn on a semi-transparent canvas overlaid on the image (see Appendix Fig. 13). We find such a UI
to be convenient and practical, as an agent’s current observations are typically available and provide
helpful guides for sketching lines and edges. Across 5 trials each of the move near and open drawer
skills, we see in Table 2 that all types of sketches produce reasonable levels of spatial precision. As
expected, Sobel edges incur the least error, but even free-hand sketches, which do not necessarily
preserve perspective projection, and line sketches, which are far sparser in detail, are not far behind.
This is also reflected in the corresponding Likert ratings (Fig. 3 (left, bottom)). Free-hand sketches
already garner moderate ratings (around 4) of perceived spatial and semantic alignment, but line
sketches result in a marked performance improvement to nearly 7, on par with the upper bound of
providing an edge-detected goal image. Adding color does not improve performance further, but
leads to interesting qualitative differences in behavior (see Appendix Fig. 7).

Table 2: RT-Sketch Spatial Precision across Sketch Types (RMSE (centroid-distance) in px.)
Skill Free-Hand Line Sketch Color Sketch Sobel Edges

Move Near 7.21± 2.76 3.49± 1.38 3.45± 1.03 3.36± 0.66
Drawer Open 3.75± 1.63 3.34± 1.08 2.48± 0.50 2.13± 0.25

H3: Next, we compare the robustness of RT-Sketch and RT-Goal-Image to the presence of visual dis-
tractors. We re-use 15 move X near Y trials from the catalog, but introducing 5−9 distractor objects
into the initial visual scene after alignment. This testing procedure is adapted from RT-1 general-
ization experiments referred to as medium-high difficulty (Brohan et al., 2023b). In Table 1 (left,
bottom), we see that RT-Sketch exhibits far lower spatial errors on average, while producing higher
semantic and spatial alignment scores over RT-Goal-Image( Fig. 3 (middle, bottom)). RT-Goal-
Image is easily confused by the distribution shift introduced by distractor objects, and often cycles
between picking up and putting down the wrong object. RT-Sketch, on the other hand, ignores
task-irrelevant objects not captured in a sketch and completes the task in most cases (see Appendix
Fig. 8).

H4: Finally, we evaluate whether sketches as a representation are favorable when language goals
alone are ambiguous. We collect 15 scenarios encompassing 3 types of ambiguity in language
instructions: instance ambiguity (T1) (e.g., move apple near orange when multiple orange instances
are present), somewhat out-of-distribution (OOD) language (T2) (e.g., move left apple near orange),
and highly OOD language (T3) (e.g., complete the rainbow) (see Appendix Fig. 9). While the
latter two qualifications should intuitively help resolve ambiguities, they were not explicitly made
part of the original RT-1 training (Brohan et al., 2023b), and hence only provide limited utility.
In Table 1 (left, bottom), RT-Sketch achieves nearly half the error of RT-1, and a 2.39-fold and
2.79-fold score increase for semantic and spatial alignment, respectively (Fig. 3 (right, bottom)).
For T1 and T2 scenarios, RT-1 often tries to pick up an instance of any object mentioned in the task
string, but fails to make progress beyond that (Appendix Fig. 10). This further suggests the utility
of sketches to express new, unseen goals with minimal overhead, when language could otherwise be
opaque or difficult to express with only in-distribution vocabulary (Appendix Fig. 11).

Limitations and Failure Modes Firstly, the image-to-sketch generation network used in this work
is fine-tuned on a dataset of sketches provided by a single human annotator, and we have yet to stress-
test the generalization capabilities of RT-Sketch at scale with sketches produced by different people.
Secondly, we note that RT-Sketch shows some inherent biases towards performing certain skills it
was trained on, and occasionally performs the wrong skill. For a detailed breakdown of RT-Sketch’s
limitations and failure modes, please see Appendix C).
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5 CONCLUSION

We propose RT-Sketch, a goal-conditioned policy for manipulation that takes a hand-drawn sketch of
the desired scene as input, and outputs actions. To enable such a policy, we first develop a scalable
way to generate paired sketch-trajectory training data via an image-to-sketch translation network,
and modify the existing RT-1 architecture to take visual information as an input. Empirically, we
show that RT-Sketch not only performs on a comparable level to existing language or goal-image
conditioning policies for a number of manipulation skills, but is amenable to different degrees of
sketch fidelity, and more robust to visual distractors or ambiguities. Future work will focus on
extending hand-drawn sketches to more structured representations, like schematics or diagrams for
assembly tasks.
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RT-Sketch: Goal-Conditioned Imitation Learning
from Hand-Drawn Sketches - Supplementary Material

In this section, we provide further details on the visual goal representations RT-Sketch sees at train
and test time (Appendix A), qualitative visualizations of experimental rollouts (Appendix B), limita-
tions (Appendix C) of RT-Sketch, as well as the interfaces used for data annotation, evaluation, and
human assessment (Appendix D). To best understand RT-Sketch’s performance and see its emergent
capabilities, please refer to our website.1

A SKETCH GOAL REPRESENTATIONS

Since the main bottleneck to training a sketch-to-action policy like RT-Sketch is collecting a dataset
of paired trajectories and goal sketches, we first train an image-to-sketch translation network T
mapping image observations oi to sketch representations gi, discussed in Section 3. To train T ,
we first take a pre-trained network for sketch-to-image translation (Li et al., 2019) trained on the
ContourDrawing dataset of paired images and edge-aligned sketches (Fig. 4). This dataset contains
L(i) = 5 crowdsourced sketches per image for 1000 images. By pre-training on this dataset, we
hope to embed a strong prior in T and accelerate learning on our much smaller dataset. Next, we
finetune T on a dataset of 500 manually drawn line sketches for RT-1 robot images. We visualize a
few examples of our manually sketched goals in Fig. 5 under ‘Line Drawings’.

Figure 4: ContourDrawing Dataset: We visualize 6 samples from the ContourDrawing Dataset
from (Li et al., 2019). For each image, 5 separate annotators provide an edge-aligned sketch of
the scene by outlining on top of the original image. As depicted, annotators are encouraged to
preserve main contours of the scene, but background details or fine-grained geometric details are
often omitted. Li et al. (2019) then train an image-to-sketch translation network T with a loss that
encourages aligning with at least one of the given reference sketches (Eq. (2)).

Notably, while we only train T to map an image to a black-and-white line sketch ĝi, we consider
various augmentations A on top of generated goals to simulate sketches with varied colors, affine
and perspective distortions, and levels of detail. Fig. 5 visualizes a few of these augmentations,
such as automatically colorizing black-and-white sketches by superimposing a blurred version of
the original RGB image, and treating an edge-detected version of the original image as a generated

1http://rt-sketch.github.io
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sketch to simulate sketches with a lot of details. We generate a dataset for training RT-Sketch by
‘sketchifying’ hind-sight relabeled goal images via T and A.

Figure 5: Visual Goal Diversity: RT-Sketch is capable of handling a variety of visual goals at both
train and test time. RT-Sketch is trained on generated and augmented images like those shown on
the right below ’Generated Goals’. But it can also interpret free-hand, line sketches, and colored
sketches at test time such as those on the left below ’Manually Sketched Goals’.

Although RT-Sketch is only trained on generated line sketches, colorized line sketches, edge-
detected images, and goal images, we find that it is able to handle sketches of even greater diversity.
This includes non-edge aligned free-hand sketches and sketches with color infills, like those shown
in Fig. 5.

B ROLLOUT VISUALIZATIONS

To interpret RT-Sketch’s performance, beyond quantitative notions of alignment like pixelwise dis-
tance or Likert ratings as in Section 4.2, we provide qualitative visualizations of experimental roll-
outs. In Fig. 6, Fig. 7, Fig. 8, and Fig. 10, we visualize each policy’s behavior for H1, H2, H3
and H4, respectively. Fig. 9 visualizes the four tiers of difficulty in language ambiguity that we
analyze for H4. To best understand RT-Sketch’s performance, we kindly refer interested readers to
our website containing a much more detailed overview and videos of all policies.
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Figure 6: H1 Rollout Visualization: We visualize the performance of RT-1, RT-Sketch, and RT-
Goal-Image on two skills from the RT-1 benchmark (upright and knock). For each skill, we visu-
alize the goal provided as input to each policy, along with the policy rollout. We see that for both
skills, RT-1 obeys the semantic task at hand by successfully placing the can upright or sideways, as
intended. Meanwhile, RT-Sketch and RT-Goal-Image struggle with orienting the can upright, but
successfuly knock it sideways. Interestingly, both RT-Sketch and RT-Goal-Image are able to place
the can in the desired location (disregarding can orientation) whereas RT-1 does not pay attention
to where in the scene the can should be placed. This is indicated by the discrepancy in position of
the can in the achieved versus goal images on the right. This trend best explains the anomalous per-
formance of RT-Sketch and RT-Goal-Image in perceived Likert ratings for the upright task (Fig. 3),
but validates their comparably higher spatial precision compared to RT-1 across all benchmark skills
(Table 1).
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Figure 7: H2 Rollout Visualization: For the open drawer skill, we visualize four separate rollouts
of RT-Sketch operating from different input types. Free-hand sketches are drawn without outlining
over the original image, such that they can contain marked perspective differences, partially ob-
scured objects (drawer handle), and roughly drawn object outlines. Line sketches are drawn on top
of the original image using the sketching interface we present in Appendix Fig. 13. Color sketches
merely add color infills to the previous modality, and Sobel Edges represent an upper bound in terms
of unrealistic sketch detail. We see that RT-Sketch is able to successfully open the correct drawer
for any sketch input except the free-hand sketch, without a noticeable performance gain or drop. For
the free-hand sketch, RT-Sketch still recognizes the need for opening a drawer, but the differences
in sketch perspective and scale can occasionally cause the policy to attend to the wrong drawer, as
depicted.
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Figure 8: H3 Rollout Visualization: We visualize qualitative rollouts for RT-Sketch and RT-Goal-
Image for 3 separate trials of the move near skill subject to distractor objects. In Column 2, we
highlight the relevant non-distractor objects that the policy must manipulate in order to achieve the
given goal. In Trial 1, we see that RT-Sketch successfuly attends to the relevant objects and moves
the blue chip bag near the coke can. Meanwhile, RT-Goal-Image is confused about which blue
object to manipulate, and picks up the blue pepsi can instead of the blue chip bag (A). In Trial 2,
RT-Sketch successfully moves an apple near the fruit on the left. A benefit of sketches is their ability
to capture instance multimodality, as any of the fruits highlighted in Column 2 are valid options to
move, whereas this does not hold for an overspecified goal image. RT-Goal-Image erroneously picks
up the green chip bag (B) instead of a fruit. Finally, Trial 3 shows a failure for both policies. While
RT-Sketch successfully infers that the green can must be moved near the red one, it accidentally
knocks over the red can (C) in the process. Meanwhile, RT-Goal-Image prematurely drops the green
can and instead tries to pick the green chip bag (D).
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Figure 9: H4 Tiers of Difficulty: To test H4, we consider language instructions that are either am-
biguous due the presence of multiple similar object instances (T1), are somewhat out-of-distribution
for RT-1 (T2), or are far out-of-distribution and difficult to specify concretely without lengthier de-
scriptions (T3). Each image represents the ground truth goal image paired with the task description.
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Figure 10: H4 Rollout Visualization (T1 as visualized in Fig. 9): One source of ambiguity in
language descriptions is mentioning an object for which there are multiple instances present. For
example, we can easily illustrate three different desired placements of an orange in the drawer via
a sketch, but an ambiguous instruction cannot easily specify which orange is relevant to pick and
place. In all rollouts, RT-Sketch successfully places the correct orange in the drawer, while RT-
1 either picks up the wrong object (A), fails to move to the place location (B), or knocks off one of
the oranges (C). Although in this case, the correct orange to manipulate could easily be specified
with a spatial relation like pick up the 〈 left/middle/right 〉 orange, we show below in Appendix
Fig. 11 that this type of language is still out of the realm of RT-1’s semantic familiarity.
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Figure 11: H4 Rollout Visualization (T2-3 as visualized in Fig. 9): For T2, we consider language
with spatial cues that intuitively should help the policy disambiguate in scenarios like the oranges
in Fig. 10. However, we find that RT-1 is not trained to handle such spatial references, and this kind
of language causes a large distribution shift leading to unwanted behavior. Thus, for the top rollout
of trying to move the chip bag to the left where there is an existing pile, RT-Sketch completes the
skill without issues, but RT-1 attempts to open the drawer instead of even attempting to rearrange
anything on the countertop (A). For T3, we consider language goals that are even more abstract in
interpretation, without explicit objects mentioned or spatial cues. Here, sketches are advantageous
in their ability to succinctly communicate goals (i.e. visual representation of a rainbow), whereas
the corresponding language task string is far too underspecified and OOD for the policy to handle
(B).
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C RT-SKETCH FAILURE MODES AND LIMITATIONS

While RT-Sketch is performant at several manipulation benchmark skills, capable of handling dif-
ferent levels of sketch detail, robust to visual distractors, and unaffected by ambiguous language, it
is not without failures and limitations.

Figure 12: RT-Sketch Failure Modes

In Fig. 12, we visualize the failure modes of RT-Sketch. One failure mode we see with RT-Sketch is
occasionally re-trying excessively, as a result of trying to align the scene as closely as possible. For
instance, in the top row, Rollout Image 3, the scene is already well-aligned, but RT-Sketch keeps
shifting the chip bag which causes some misalignment in terms of the chip bag orientation. Still,
this kind of failure is most common with RT-Goal-Image (Table 1), and is not nearly as frequent
for RT-Sketch. We posit that this could be due to the fact that sketches enable high-level spatial
reasoning without over-attending to pixel-level details.

One consequence of spatial reasoning at such a high level, though, is an occasional lack of precision.
This is noticeable when RT-Sketch orients items incorrectly (second row) or positions them slightly
off, possibly disturbing other items in the scene (third row). This may be due to the fact that sketches
are inherently imperfect, which makes it difficult to reason with such high precision.

Finally, we see that RT-Sketch occasionally manipulates the wrong object (rows 4 and 5). Interest-
ingly, we see that a fairly frequent pattern of behavior is to manipulate the wrong object (orange in
row 4) to the right target location (near green can in row 4). This may be due to the fact that the
sketch-generating GAN has occasionally hallucinated artifacts or geometric details missing from
the actual objects. Having been trained on some examples like these, RT-Sketch can mistakenly
perceive the wrong object to be aligned with an object drawn in the sketch. However, the sketch still
indicates the relative desired spatial positioning of objects in the scene, so in this case RT-Sketch still
attempts to align the incorrect object with the proper place.
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Finally, the least frequent failure mode is manipulating the wrong object to the wrong target location
(i.e. opening the wrong drawer handle). This is most frequent when the input is a free-hand sketch,
and could be mmitigated by increasing sketch detail (Table 2).

D EVALUATION AND ASSESSMENT INTERFACES

Figure 13: Sketching UI: We design a custom sketching interface for manually collecting paired
robot images and sketches with which to train T , and for sketching goals for evaluation. The in-
terface visualizes the current robot observation, and provides the ability to draw on a digital screen
with a stylus. The interface supports different colors and erasure. We note that intuitively, drawing
on top of the image is not an unreasonable assumption to make, since current agent observations are
far more readily available than a goal image, for instance. Additionally, the overlay is intended to
make the sketching interface easy for the user to provide, without having to eyeball edges for the
drawers or handles blindly.
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Figure 14: Assessment UI: For all skills and methods, we ask labelers to assess semantic and
spatial alignment of the recorded rollout relative to the ground truth semantic instruction and visual
goal. We show the interface above, where labelers are randomly assigned to skills and methods
(anonymized). The results of these surveys are reported in Fig. 3.
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